Triangles and elliptic curves, VI
نویسندگان
چکیده
منابع مشابه
Elliptic Curves and Triangles with Three Rational Medians
In his paper Triangles with three rational medians, about the characterization of all rational-sided triangles with three rational medians, Buchholz proves that each such triangle corresponds to a point on a oneparameter family of elliptic curves whose rank is at least 2. We prove that in fact the exact rank of the family in Buchholz paper is 3. We also exhibit a subfamily whose rank is at leas...
متن کاملRandom Triangles VI
As a conclusion of our survey, we gather various results for random triangles in the plane subject to constraints. If we break a line segment L in two places at random, the three pieces can be configured as a triangle with probability 1/4 [1, 2, 3, 4]. If we instead select three points on a circle Γ at random, a triangle can almost surely be formed by connecting each pair of points with a line....
متن کاملElliptic Nets and Elliptic Curves
Elliptic divisibility sequences are integer recurrence sequences, each of which is associated to an elliptic curve over the rationals together with a rational point on that curve. In this paper we present a higher-dimensional analogue over arbitrary base fields. Suppose E is an elliptic curve over a field K, and P1, . . . , Pn are points on E defined over K. To this information we associate an ...
متن کاملRight Triangles with Algebraic Sides and Elliptic Curves over Number Fields
Given any positive integer n, we prove the existence of infinitely many right triangles with area n and side lengths in certain number fields. This generalizes the famous congruent number problem. The proof allows the explicit construction of these triangles; for this purpose we find for any positive integer n an explicit cubic number field Q(λ) (depending on n) and an explicit point Pλ of infi...
متن کاملGeneralized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1995
ISSN: 0386-2194
DOI: 10.3792/pjaa.71.184